On the Number of Unique Expansions in Non-integer Bases

نویسنده

  • MARTIJN DE VRIES
چکیده

Let q > 1 be a real number and let m = m(q) be the largest integer smaller than q. It is well known that each number x ∈ Jq := [0, P ∞ i=1 mq ] can be written as x = P ∞ i=1 ciq −i with integer coefficients 0 ≤ ci < q. If q is a non-integer, then almost every x ∈ Jq has continuum many expansions of this form. In this note we consider some properties of the set Uq consisting of numbers x ∈ Jq having a unique representation of this form. More specifically, we compare the size of the sets Uq and Ur for values q and r satisfying 1 < q < r and m(q) = m(r).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy and Quasi-greedy Expansions in Non-integer Bases

We generalize several theorems of Rényi, Parry, Daróczy and Kátai by characterizing the greedy and quasi-greedy expansions in non-integer bases.

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

Minimal expansions in redundant number systems: Fibonacci bases and Greedy algorithms

We study digit expansions with arbitrary integer digits in base q (q integer) and the Fibonacci base such that the sum of the absolute values of the digits is minimal. For the Fibonacci case, we describe a unique minimal expansion and give a greedy algorithm to compute it. Additionally, transducers to calculate minimal expansions from other expansions are given. For the case of even integer bas...

متن کامل

On the expansions of a real number to several integer bases

Only very little is known on the expansions of a real number to several integer bases. We establish various results showing that the expansions of a real number in two multiplicatively independent bases cannot both be simple, in a suitable sense. We also construct explicitly a real number ξ which is rich to all integer bases, that is, with the property that, for every integer b ≥ 2, every finit...

متن کامل

On the regularity of the generalised golden ratio function

Given a finite set of real numbers A, the generalised golden ratio is the unique real number G(A) > 1 for which we only have trivial unique expansions in smaller bases, and have non-trivial unique expansions in larger bases. We show that G(A) varies continuously with the alphabet A (of fixed size). What is more, we demonstrate that as we vary a single parameter m within A, the generalised golde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008